An important challenge in vision-based action recognition is the embedding of spatiotemporal features with two or more heterogeneous modalities into a single feature. In this study, we propose a new 3D deformable transformer for action recognition with adaptive spatiotemporal receptive fields and a cross-modal learning scheme. The 3D deformable transformer consists of three attention modules: 3D deformability, local joint stride, and temporal stride attention. The two cross-modal tokens are input into the 3D deformable attention module to create a cross-attention token with a reflected spatiotemporal correlation. Local joint stride attention is applied to spatially combine attention and pose tokens. Temporal stride attention temporally reduces the number of input tokens in the attention module and supports temporal expression learning without the simultaneous use of all tokens. The deformable transformer iterates L times and combines the last cross-modal token for classification. The proposed 3D deformable transformer was tested on the NTU60, NTU120, FineGYM, and Penn Action datasets, and showed results better than or similar to pre-trained state-of-the-art methods even without a pre-training process. In addition, by visualizing important joints and correlations during action recognition through spatial joint and temporal stride attention, the possibility of achieving an explainable potential for action recognition is presented.
translated by 谷歌翻译
Cartoonization is a task that renders natural photos into cartoon styles. Previous deep cartoonization methods only have focused on end-to-end translation, which may hinder editability. Instead, we propose a novel solution with editing features of texture and color based on the cartoon creation process. To do that, we design a model architecture to have separate decoders, texture and color, to decouple these attributes. In the texture decoder, we propose a texture controller, which enables a user to control stroke style and abstraction to generate diverse cartoon textures. We also introduce an HSV color augmentation to induce the networks to generate diverse and controllable color translation. To the best of our knowledge, our work is the first deep approach to control the cartoonization at inference while showing profound quality improvement over to baselines.
translated by 谷歌翻译
Existing analyses of neural network training often operate under the unrealistic assumption of an extremely small learning rate. This lies in stark contrast to practical wisdom and empirical studies, such as the work of J. Cohen et al. (ICLR 2021), which exhibit startling new phenomena (the "edge of stability" or "unstable convergence") and potential benefits for generalization in the large learning rate regime. Despite a flurry of recent works on this topic, however, the latter effect is still poorly understood. In this paper, we take a step towards understanding genuinely non-convex training dynamics with large learning rates by performing a detailed analysis of gradient descent for simplified models of two-layer neural networks. For these models, we provably establish the edge of stability phenomenon and discover a sharp phase transition for the step size below which the neural network fails to learn "threshold-like" neurons (i.e., neurons with a non-zero first-layer bias). This elucidates one possible mechanism by which the edge of stability can in fact lead to better generalization, as threshold neurons are basic building blocks with useful inductive bias for many tasks.
translated by 谷歌翻译
Prostate cancer (PCa) is one of the most prevalent cancers in men and many people around the world die from clinically significant PCa (csPCa). Early diagnosis of csPCa in bi-parametric MRI (bpMRI), which is non-invasive, cost-effective, and more efficient compared to multiparametric MRI (mpMRI), can contribute to precision care for PCa. The rapid rise in artificial intelligence (AI) algorithms are enabling unprecedented improvements in providing decision support systems that can aid in csPCa diagnosis and understanding. However, existing state of the art AI algorithms which are based on deep learning technology are often limited to 2D images that fails to capture inter-slice correlations in 3D volumetric images. The use of 3D convolutional neural networks (CNNs) partly overcomes this limitation, but it does not adapt to the anisotropy of images, resulting in sub-optimal semantic representation and poor generalization. Furthermore, due to the limitation of the amount of labelled data of bpMRI and the difficulty of labelling, existing CNNs are built on relatively small datasets, leading to a poor performance. To address the limitations identified above, we propose a new Zonal-aware Self-supervised Mesh Network (Z-SSMNet) that adaptatively fuses multiple 2D, 2.5D and 3D CNNs to effectively balance representation for sparse inter-slice information and dense intra-slice information in bpMRI. A self-supervised learning (SSL) technique is further introduced to pre-train our network using unlabelled data to learn the generalizable image features. Furthermore, we constrained our network to understand the zonal specific domain knowledge to improve the diagnosis precision of csPCa. Experiments on the PI-CAI Challenge dataset demonstrate our proposed method achieves better performance for csPCa detection and diagnosis in bpMRI.
translated by 谷歌翻译
Deep learning-based weather prediction models have advanced significantly in recent years. However, data-driven models based on deep learning are difficult to apply to real-world applications because they are vulnerable to spatial-temporal shifts. A weather prediction task is especially susceptible to spatial-temporal shifts when the model is overfitted to locality and seasonality. In this paper, we propose a training strategy to make the weather prediction model robust to spatial-temporal shifts. We first analyze the effect of hyperparameters and augmentations of the existing training strategy on the spatial-temporal shift robustness of the model. Next, we propose an optimal combination of hyperparameters and augmentation based on the analysis results and a test-time augmentation. We performed all experiments on the W4C22 Transfer dataset and achieved the 1st performance.
translated by 谷歌翻译
Traditional weather forecasting relies on domain expertise and computationally intensive numerical simulation systems. Recently, with the development of a data-driven approach, weather forecasting based on deep learning has been receiving attention. Deep learning-based weather forecasting has made stunning progress, from various backbone studies using CNN, RNN, and Transformer to training strategies using weather observations datasets with auxiliary inputs. All of this progress has contributed to the field of weather forecasting; however, many elements and complex structures of deep learning models prevent us from reaching physical interpretations. This paper proposes a SImple baseline with a spatiotemporal context Aggregation Network (SIANet) that achieved state-of-the-art in 4 parts of 5 benchmarks of W4C22. This simple but efficient structure uses only satellite images and CNNs in an end-to-end fashion without using a multi-model ensemble or fine-tuning. This simplicity of SIANet can be used as a solid baseline that can be easily applied in weather forecasting using deep learning.
translated by 谷歌翻译
This paper proposes a graph-based approach to representing spatio-temporal trajectory data that allows an effective visualization and characterization of city-wide traffic dynamics. With the advance of sensor, mobile, and Internet of Things (IoT) technologies, vehicle and passenger trajectories are being increasingly collected on a massive scale and are becoming a critical source of insight into traffic pattern and traveller behaviour. To leverage such trajectory data to better understand traffic dynamics in a large-scale urban network, this study develops a trajectory-based network traffic analysis method that converts individual trajectory data into a sequence of graphs that evolve over time (known as dynamic graphs or time-evolving graphs) and analyses network-wide traffic patterns in terms of a compact and informative graph-representation of aggregated traffic flows. First, we partition the entire network into a set of cells based on the spatial distribution of data points in individual trajectories, where the cells represent spatial regions between which aggregated traffic flows can be measured. Next, dynamic flows of moving objects are represented as a time-evolving graph, where regions are graph vertices and flows between them are treated as weighted directed edges. Given a fixed set of vertices, edges can be inserted or removed at every time step depending on the presence of traffic flows between two regions at a given time window. Once a dynamic graph is built, we apply graph mining algorithms to detect change-points in time, which represent time points where the graph exhibits significant changes in its overall structure and, thus, correspond to change-points in city-wide mobility pattern throughout the day (e.g., global transition points between peak and off-peak periods).
translated by 谷歌翻译
Improperly constructed datasets can result in inaccurate inferences. For instance, models trained on biased datasets perform poorly in terms of generalization (i.e., dataset bias). Recent debiasing techniques have successfully achieved generalization performance by underestimating easy-to-learn samples (i.e., bias-aligned samples) and highlighting difficult-to-learn samples (i.e., bias-conflicting samples). However, these techniques may fail owing to noisy labels, because the trained model recognizes noisy labels as difficult-to-learn and thus highlights them. In this study, we find that earlier approaches that used the provided labels to quantify difficulty could be affected by the small proportion of noisy labels. Furthermore, we find that running denoising algorithms before debiasing is ineffective because denoising algorithms reduce the impact of difficult-to-learn samples, including valuable bias-conflicting samples. Therefore, we propose an approach called denoising after entropy-based debiasing, i.e., DENEB, which has three main stages. (1) The prejudice model is trained by emphasizing (bias-aligned, clean) samples, which are selected using a Gaussian Mixture Model. (2) Using the per-sample entropy from the output of the prejudice model, the sampling probability of each sample that is proportional to the entropy is computed. (3) The final model is trained using existing denoising algorithms with the mini-batches constructed by following the computed sampling probability. Compared to existing debiasing and denoising algorithms, our method achieves better debiasing performance on multiple benchmarks.
translated by 谷歌翻译
In high dimensional variable selection problems, statisticians often seek to design multiple testing procedures controlling the false discovery rate (FDR) and simultaneously discovering more relevant variables. Model-X methods, such as Knockoffs and conditional randomization tests, achieve the first goal of finite-sample FDR control under the assumption of known covariates distribution. However, it is not clear whether these methods can concurrently achieve the second goal of maximizing the number of discoveries. In fact, designing procedures to discover more relevant variables with finite-sample FDR control is a largely open question, even in the arguably simplest linear models. In this paper, we derive near-optimal testing procedures in high dimensional Bayesian linear models with isotropic covariates. We propose a Model-X multiple testing procedure, PoEdCe, which provably controls the frequentist FDR from finite samples even under model misspecification, and conjecturally achieves near-optimal power when the data follow the Bayesian linear model with a known prior. PoEdCe has three important ingredients: Posterior Expectation, distilled Conditional randomization test (dCRT), and the Benjamini-Hochberg procedure with e-values (eBH). The optimality conjecture of PoEdCe is based on a heuristic calculation of its asymptotic true positive proportion (TPP) and false discovery proportion (FDP), which is supported by methods from statistical physics as well as extensive numerical simulations. Furthermore, when the prior is unknown, we show that an empirical Bayes variant of PoEdCe still has finite-sample FDR control and achieves near-optimal power.
translated by 谷歌翻译
许多视觉现象表明,人类使用自上而下的生成或重建过程来创建视觉感知(例如,图像,对象完成,pareidolia),但对重建在强大的对象识别中的作用鲜为人知。我们构建了一个迭代编码器网络,该网络生成对象重建,并将其用作自上而下的注意力反馈,以将最相关的空间和功能信息路由馈送到前向对象识别过程。我们使用具有挑战性的分布数字识别数据集MNIST-C测试了该模型,其中将15种不同类型的转换和损坏应用于手写数字图像。我们的模型对各种图像扰动表现出强烈的概括性能,平均表现所有其他模型,包括前馈CNN和受对抗训练的网络。我们的模型对于模糊,噪音和遮挡腐败特别强大,在这种情况下,形状感知起着重要作用。消融研究进一步揭示了在强大的物体识别中基于空间和特征注意的两个互补作用,前者在很大程度上与注意文献中的空间掩盖益处一致(重建是掩膜),后者主要促进该模型的推理速度的速度。 (即,达到一定置信阈值的时间步骤的数量)通过减少可能的对象假设的空间。我们还观察到该模型有时会从噪声中幻觉,从而导致高度可解释的人类误差。我们的研究表明,基于重建的反馈建模赋予AI系统具有强大的注意机制,这可以帮助我们了解产生感知在人类视觉处理中的作用。
translated by 谷歌翻译